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The paper contains a parametric dynamic analysis of cable-strut domes. The special struc-
tures named tensegrity are considered. Two qualitative different tensegrity domes, i.e., the
Geiger dome and the Levy dome are taken into account. The aim of the study is to compare
the dynamic behaviour of such structures. The first stage of analysis involves the identifica-
tion of initial prestress forces (system of internal forces, which holds structural components
in stable equilibrium) and infinitesimal mechanisms. The second stage focuses on calculat-
ing natural frequencies, while in the last, the impact of time-independent external loads on
vibrations is studied. The influence of initial prestress and external load on the dynamic re-
sponse of the structures is considered. A geometrically non-linear model is used to analysis.
Presented considerations are crucial for the next step in the analysis, i.e., dynamic stability
analysis of the behaviour of tensegrity structures under periodic loads.
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1. Introduction

The tensegrity steel domes are special cable-strut trusses. These structures are characterized
by a system of internal forces, which holds structural components in stable equilibrium (a self-
-balanced system of internal forces, self-stress state, initial prestress). Additionally, some of
these structures are also characterized by the presence of infinitesimal mechanisms, which are
stabilized by a self-balanced system of internal forces. In such cases, a modification of the initial
prestress allows for controlling static and dynamic parameters of the structure. Low material
demand, lightness of the system, and resistance to various types of loads are the main advantages
of these structures. The most common are two tensegrity domes, i.e., the Geiger dome (Geiger,
1988) and the Levy dome (Levy, 1989). In the years 1990-2022, according to Google Scholar,
the appearance of the Geiger dome in different articles counts more than 10 000 and more than
18 000 of Levy’s dome. Both structures consist of load-bearing systems represented by flat or
spatial girders connected with additional longitudinal cables. The approach of tensegrity dome
is used for long-span roofs (Levy, 1994; Oribasi et al., 2002) and covers (Geiger et al., 1986; Levy
et al., 2013).
Practical application of tensegrity domes requires a thorough examination of static and

dynamic properties, as well as overall behaviour of the structure. Most of the research to date
focuses on layout design (Rebielak, 2000; Yuan et al., 2007), form-finding methods (Lee et al.,
2009), or shape optimization (Kawaguchi et al., 1999; Zhang and Feng, 2017). A smaller number
of studies focused on static parameters of tensegrity structures (Shen et al., 2021; Sun et al., 2021;
Obara et al., 2023a), and only a few on the dynamic behaviour of dome systems (Obara, 2019;
Kim and Sin, 2014; Atig et al., 2017). Due to a non-conventional shape, the complete dynamic
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analysis of tensegrity domes can be challenging. Some papers contain an initial dynamic analysis
of the Geiger dome (Kim and Sin, 2014; Qin et al., 2023).
The analysis of the literature shows that the vast majority of works concerns tensegrity

design, the search for stable forms, optimization algorithms, methods of controlling the shape
of tensegrity structures under the influence of external loads, and discusses the use of these
structures. Against this background, parametric analysis evaluating the influence of the initial
prestress on dynamic properties of tensegrity structures is the subject of few studies. In addition,
these works relate to specific solutions. The first attempt to fill this gap was the paper (Obara and
Solovei, 2023). The influence of initial prestress on the natural frequency for Geiger domes was
determined. Two cases of configurations (with a closed and open upper section) were considered.
Additionally, two variants of the nature of a dome (regular and modified) were taken into account
to compare the dynamic behaviour of domes. In turn, this paper contains a comparison of the
dynamic behaviour of the two most popular, qualitatively different, types of tensegrity domes
i.e., the Levy and Geiger domes. First, the system of internal forces, which holds structural
components in stable equilibrium (initial prestress), and infinitesimal mechanisms are identified.
Next, the influence of initial prestress on frequencies is determined. The consideration includes
natural and additionally free vibrations. The impact of time-independent external loads on the
vibrations is analyzed. The load is treated as an initial disturbance of the equilibrium state, i.e.,
as imposition of the initial conditions, hence the frequencies are called free. To evaluate this
behaviour, a geometrically non-linear model is used. The presented parametric considerations,
among others, lead to an answer to the question of how the initial prestress and external load
influence the dynamic response of the structure. Additionally, they are crucial for the dynamic
stability analysis of the behaviour of tensegrity structures under periodic loads, which will be
the subject of the next considerations.

2. Material and methods

Tensegrity domes are described n-element (e = 1, 2, . . . , n) spatial cable-strut trusses with m de-
grees of freedom q ∈ R

m×1. The elasticity of elements e are described by the elasticity matrix
E ∈ R

n×n

E = diag
[
E1A1

L1

E2A2

L2
· · ·
EnAn

Ln

]
(2.1)

where Ee is Young’s modulus, Ae is across-sectional area and Le is length of the element. In
turn, geometry is described by the compatibility matrix B ∈ R

n×m, which can be determined
using formalism of the finite element method (Zienkiewicz and Taylor, 2000). Additionally,
in contrast to traditional steel domes, tensegrity domes are characterized by a self-balanced
system of internal forces (self-stress state). The first step of the analysis of tensegrity structures
relies on the identification of the self-stress state. The most frequently used methods are the
force density method (Zhang and Ohsaki, 2006), dynamic relaxation (Bel Hadj et al., 2010),
energy optimization (Li et al., 2011), reduced coordinates method (Arsenault and Gosselin,
2005), iteration method (Ma et al., 2018), genetic algorithm (Obara et al., 2023b), singular
value decomposition of the force density and equilibrium matrices (Tran and Lee, 2013) or of
the compatibility matrix (Gilewski et al., 2016). Since the self-stress state does not depend on
geometrical and mechanical characteristics and on an external load, one of the simplest methods
to identify it is spectral analysis of the matrix BBT ∈ R

n×n. The self-stress state is considered
as an eigenvector yS ∈ R

n×1 related to the zero eigenvalue of the matrix BBT (Obara, 2019;
Obara and Solovei, 2023). The self-equilibrium system of longitudinal forces S ∈ R

n×1 depends
on the eigenvector yS and on the initial prestress level S

S = ySS (2.2)
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The range of initial prestress level S is a property of the structure and depends on its char-
acteristics and external load. The minimum prestress level Smin is related to the appropriate
distribution of normal forces in the elements of the structure. The external load can cause a
different distribution of normal forces, and it can be corrected by the introduction of a proper
initial prestress level. In turn, the maximum prestress level Smax is related to the load-bearing
capacity of the most stressed elements.
The aim of the paper is to assess the impact of prestress level on the dynamic behaviour

of tensegrity domes under time-independent external loads P ∈ R
m×1. The most interesting

for all are tensegrity domes characterized by the occurrence of infinitesimal mechanisms. In the
absence of the initial prestress forces such systems are unstable, i.e., geometrically variable.
The stabilization occurs only after the introduction of initial prestress. It should be noted,
the mechanism is an eigenvector xS ∈ R

m×1 related to the zero eigenvalue of the matrix
BTB ∈ R

m×m. The modification of the initial prestress level S allows for control, among others,
dynamic parameters of the structure. In the paper, natural vibrations and free vibrations (taking
into account the impact of the load, which is treated as the initial disturbance of the equilibrium
state, i.e., as imposition of the initial conditions) are considered. The frequencies of vibrations
are determined using the modal analysis

[KL +KG − (2πf)2M]q̃ = 0 (2.3)

where KL = BTEB ∈ R
m×m is a linear stiffness matrix, M ∈ R

m×m is a consequent mass
matrix, f is the natural (fi(0)) or free (fi(P )) frequency of vibrations, q̃ is an amplitude vector
and KG ∈ R

m×m is a geometry stiffness matrix.
In the case of natural vibrations, the geometry stiffness matrix depends only on the self-

-equilibrium system of longitudinal forces S (2.2), consequently KG = KG(S). For tensegrity
domes characterized by infinitesimal mechanisms, the omission of the influence of prestress
(S = 0) in Eq. (2.3) leads to zero natural frequencies. The number of them is equal to the
number of the infinitesimal mechanisms, and the forms of vibrations correspond to the forms of
mechanisms. In the case of free vibrations, the geometry stiffness matrix depends additionally
on the longitudinal forces N ∈ R

n×1 caused by the external load

KG = KG(S) +KGN (N) (2.4)

Another specific property of tensegrity systems is the size of displacements, which can be large
even with small deformations. Due to this, to calculate the axial forces, a geometrically non-
-linear model is used, assuming the hypothesis of large displacements. The non-linear theory
of elasticity in terms of the Total Lagrangian (TL) was adopted as the basis for formulating
tensegrity lattice equations

[KL +KG +KNL(q)]q = P (2.5)

where KNL(q) ∈ R
m×m is a non-linear displacement stiffness matrix. The explicit forms of the

matrices mentioned above can be found, for example, in (Obara, 2019).

3. Results and discussion

The paper presents dynamic parametric analyzes of two of the most well-known tensegrity domes,
i.e., the Levy dome and Geiger dome. The domes consist of uniformly distributed systems of load-
-bearing girders. Comparing the geometry of both domes, significant differences can be noticed.
In the case of the Levy dome, the load-bearing girders are spatial (Figs. 1a,b) whereas in the
case of the Geiger dome – flat (Figs. 1c,d). The load-bearing girders consist of tensioned cables
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(elements: 1-6) and compressed struts (elements: S1, S2, S3), which are connected by additional
circumferential cables (elements: C1-C6). The node coordinates of the load-bearing girders are
presented in Table 1 – diameter of 12m and height of 3.25m of all domes were adopted. The
domes are supported in every external node of the lower section.

Fig. 1. Load-bearing girders of: (a) Levy type A, (b) Levy type B, (c) Geiger type A, (d) Geiger type B

Table 1. Node coordinates [m] of the load-bearing girders

No. Type of
1 2 3 4 5 6 7

nodes girder

x
A 0.0 0.0

2.0 2.0 4.0 4.0 6.0
B 0.5 0.5

z A and B 2.1 1.5 1.85 0.45 1.15 −1.15 0.0

It should be noted, see the literature, there are two design solutions in the case of Geiger
dome – regular (Yuan et al., 2007; Kim and Sin, 2014; Qin et al., 2023) and modified (Atig et
al., 2017). The comparison of both of them, in the natural frequency range, was the subject of
our previous studies (Obara and Solovei, 2023). In this paper, due to being more similar to the
Levy dome, a modified solution was chosen. The considerations contain two cases of configura-
tions, i.e., type A – with a closed upper section (Figs. 1a and 1c) and type B – with an open
upper section (Figs. 1b and 1d) and a different number of load-bearing girders i.e., 6 (Figs. 2a,
2c, 3a, 3c), 8, 10 and 12 (Figs. 2b, 2d, 3b, 3d). The names of analyzed domes are acronyms:
G – Geiger dome, L – Levy dome, the number – the number of load-bearing girders and letter
A or B – girders type e.g., “L 6A” is the Levy dome with 6 girders type A.
In order to compare the behaviour of both domes, the same maximum prestress level

Smax = 50 kN was adopted (due to the maximum effort of the cables of the Geiger dome
Wmax = 0.93). In turn, the minimum prestress level Smin is an individual characteristic for
every dome. Wherein, in the case of natural vibrations, the minimum prestress value is assumed
as Smin = 0kN.

3.1. Identification of self-stress states and infinitesimal mechanisms

The first step in the analysis of the Levy and Geiger domes is the identification of immanent
features of tensegrity structures, such as infinitesimal mechanisms and self-stress states. The
results of this analysis are shown in Table 2. The domes differ in the number of these features.
The Levy dome type A are characterized by zero mechanisms and type B by 1 mechanism,
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Fig. 2. Levy domes: (a) L 6A, (b) L 12A, (c) L 6B, (d) L 12B

Fig. 3. Geiger domes: (a) G 6A, (b) G 12A, (c) G 6B, (d) G 12B

Table 2. Immanent features of tensegrity domes

Type
No.
nodes

Levy dome Geiger dome
and No. No. ele- No. mecha- No. self- No. ele- No. Mecha- No. self-
girders ments nisms -stress states ments nisms -stress states

A

6 32 85 0 7 73 8 3
8 42 113 0 11 97 8 3
10 52 141 0 15 121 8 3
12 62 169 0 19 145 8 3

B

6 42 114 1 7 90 21 3
8 56 152 1 9 120 27 3
10 70 190 1 11 150 33 3
12 84 228 1 13 180 39 3

Fig. 4. Infinitesimal mechanism of domes: (a) L 6B, (b) L 8B, (c) L 10B, (d) L 12B

regardless of the number of girders. It should be noted that the mechanism is related only to the
upper section (Fig. 4). In turn, in the case of Geiger dome, the number of mechanisms increases
with the number of girders. The type of mechanisms differs in the case of the Levy dome – it
is related to the entire structure (Fig. 5). In turn, in the case of self-stress states, their number
does not depend on the number of girders in the case of Geiger dome (always equals three). In
the case of the Levy dome, the number of self-stress states increases with the number of girders.
Unfortunately, none of the identified self-stress states identify the type of elements properly. A
superposition is needed. The superposed values of self-stress states yS for the Levy and Geiger
domes are presented in Tables 3 and 4, respectively.



258 P. Obara et al.

Fig. 5. Infinitesimal mechanisms of dome G 6A

Table 3. Values of self-stress state yS of Levy domes

Type A Type B
el. yS el. yS el. yS el. yS el. yS el. yS

S1

−0.147(6)

−0.308(8)

−0.465(10)

−0.616(12)

1

0.197(6)

0.311(8)

0.375(10)

0.414(12)

C1

1.040(6)

1.753(8)

2.401(10)

3.016(12)

S1

−0.031(6)

−0.050(8)

−0.061(10)

−0.068(12)

1

0.100(6)

0.157(8)

0.189(10)

0.209(12)

C1

1.040(6)

1.753(8)

2.401(10)

3.016(12)

S2

−0.161(6)

−0.218(8)

−0.248(10)

−0.264(12)

2

0.142(6)

0.224(8)

0.270(10)

0.298(12)

C2

0.336(6)

0.691(8)

1.032(10)

1.359(12)

S2

−0.161(6)

−0.218(8)

−0.248(10)

−0.264(12)

2

0.073(6)

0.114(8)

0.137(10)

0.151(12)

C2

0.336(6)

0.691(8)

1.032(10)

1.359(12)

S3 −1.000 3

0.295(6)

0.372(8)

0.406(10)

0.424(12)

C3 S3 −1.000 3

0.295(6)

0.372(8)

0.406(10)

0.424(12)

C3

0.109(6)

0.252(8)

0.396(10)

0.534(12)

4

1.491(6)

1.303(8)

1.204(10)

1.147(12)

C4 4

1.491(6)

1.303(8)

1.204(10)

1.147(12)

C4

0.154(6)

0.353(8)

0.554(10)

0.748(12)
(6) dome with 6 girders; (8) dome with 8 girders;
(10) dome with 10 girders; (12) dome with 12 girders

3.2. Influence of the number of girders on natural frequencies

After the identification of self-stress states and infinitesimal mechanisms, the influence of
initial prestress level S on the natural frequencies is considered. Particularly, the impact of the
number of girders on the frequencies is analyzed. It is assumed that the cables are made of
steel S460N. Type A cables with Young’s modulus 210GPa (EN 1993-1-11: 2006) are used. The
cable diameter and load-bearing capacity are 20mm and 110.2 kN, respectively. The struts are
made of hot-finished circular hollow sections (steel S355J2) with Young’s modulus 210GPa. The
diameter and thickness of struts are 76.1mm and 2.9mm, respectively. The struts were divided
into three groups according to length and load-bearing capacity. Group 1 lengths are 0.6m and
NRd = 224.3 kN, group 2 are 1.4m and 170.5 kN, and group 3 are 2.3m and 107.1 kN. The
density of steel is equal to ρ = 7860 kg/m3. The calculations were made using quasi-linear and
non-linear models implemented in the Mathematica environment.
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Table 4. Values of self-stress state yS of Geiger domes

Type A Type B
el. yS el. yS el. yS el. yS el. yS el. yS

S1

−0.228(6)

−0.304(8)

−0.380(10)

−0.455(12)

1 0.306 C1

1.739(6)

2.272(8)

2.814(10)

3.360(12)

S1 −0.051 1 0.308 C1

1.739(6)

2.272(8)

2.814(10)

3.360(12)

S2 −0.265 2 0.220 C2

0.756(6)

0.988(8)

1.223(10)

1.461(12)

S2 −0.265 2 0.223 C2

0.756(6)

0.988(8)

1.223(10)

1.461(12)

S3 −1.000 3 0.801 C3 S3 −1.000 3 0.801 C3

0.217(6)

0.283(8)

0.351(10)

0.419(12)

4 2.006 C4 4 2.006 C4

0.303(6)

0.396(8)

0.491(10)

0.586(12)

C5

0.236(6)

0.308(8)

0.381(10)

0.455(12)

C5

0.236(6)

0.308(8)

0.381(10)

0.455(12)

C6

0.227(6)

0.297(8)

0.368(10)

0.439(12)

C6

0.227(6)

0.297(8)

0.368(10)

0.439(12)
(6) dome with 6 girders; (8) dome with 8 girders;
(10) dome with 10 girders; (12) dome with 12 girders

The first part of the assessment concerns the influence of initial prestress level S on natural
frequencies fi(0). The dynamic behaviour of the dome is highly dependent on the type of load-
-bearing girder and on the number of identified infinitesimal mechanisms. In Fig. 6, the first
and last frequencies corresponding to the infinitesimal mechanisms are presented. The zero
level of initial prestress leads to zero natural frequencies, however, they increase with an initial
prestress level. The range of changes mainly depends on the kind of dome, which means, on the
number of mechanisms. In the case of the dome with one mechanism, i.e., Levy domes type B
(Fig. 6a), the first frequency for Smax is 17.62Hz (L 6B), 30.49Hz (L 8B), 42.28Hz (L 10B) and
54.2 Hz (L 12B), which means that with the number of girds the frequency increases (comparing
with L 6B) by 73%, 140% and 208%, respectively. In turn, for domes with eight mechanisms,
i.e., Geiger domes type A (Fig. 6b), the influence of the number of girders on frequencies is
significantly smaller. For example, the value of eighth frequency f8 for Smax varies within the
range of 12.3 Hz (G 6A) to 13.7 Hz (G 12A), this means an increase of up 11%. In the case of the
Geiger domes type B (Fig. 6b) with a different number of infinitesimal mechanisms, the influence
of the number of girders depends on the frequency. The first natural frequency for all domes
is almost the same – f1(Smax) = 5.1Hz to 5.6Hz but the last frequency, which corresponds to
the mechanism, for Smax is 29.79Hz (G 6B), 35.94Hz (G 8B), 48.31Hz (G 10B) and 57.83Hz
(G 12B), which means that with growing number of girds the frequency increases (comparing
with G 6B) by 21%, 62% and 94%, respectively. Additionally, as can be seen, for Geiger domes
type B, the higher frequencies are more sensitive to a change in prestressing.
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Fig. 6. Natural frequencies corresponding to the infinitesimal mechanisms: (a) Levy domes type B,
(b) Geiger domes type A, (c) Geiger domes type B

It is well known that the number of natural frequencies, depending on prestressing, is equal
to the number of infinitesimal mechanisms fnm, but in the case of Levy dome type B and
Geiger domes of type A, it is different. These structures are characterized by additional natural
frequencies fadd. The number of them, and the sensitivity to the initial prestress changes, depends
on the number of load-bearing girders No.g

fadd =

{
No.g − 4 for Levy domes

No.g − 3 for Geiger domes
(3.1)

For comparison, the sensitivity to the prestress changes, in Figs. 7 and 8, the last frequency
corresponding to the infinitesimal mechanism, the additional depending on prestress and the
first independent of prestress are shown. In the absence of prestress, the additional frequencies,
unlike the frequency corresponding to the mechanism, are not zero and the character of the
dependence on prestress relies on the types of domes. In the case of Levy domes (Fig. 7), the
additional frequencies are more sensitive to a change in prestressing than in the case of Geiger
domes (Fig. 8). Additionally, the nature of changes is different. First, for Geiger domes, the
additional frequencies are directly proportional to the initial prestress level, whereas in the case
of Levy domes, they are not. Secondly, the influence of the number of girders on the frequency is
more significant in Levy domes. Thirdly, for Geiger domes, regardless of the number of girders,
the value of the frequency independent of prestress is much higher than the frequencies dependent
on prestress.

The behaviour of the Levy domes type A is completely different, compared to the Levy dome
type B and Geiger domes of type A and B. In these domes, the mechanism was not identified. In
Fig. 9, the influence of the initial prestress S on the first, second, and third frequency is shown.
The dependencies are linear and almost constant, especially for domes with a small number of
girders. In the case of the first frequency, with a growth of the prestress from Smin to Smax, the
frequency increased only by 6.4% (L 6A), 6% (L 8A), 7% (L 10A), and 8.3% (L 12A), whereas
in the case of the third frequency – 0.4% (L 6A), 3.5% (L 8A), 5.1% (L 10A), and 6.4% (L 12A).
Comparing all results, we can say that due to the lack of mechanisms in the case of Levy dome
type A, the natural frequencies are practically not affected by the initial prestress, independent
of the number of load-bearing girders.
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Fig. 7. Influence of the initial prestress S on the natural frequency for Levy domes type B: (a) L 6B,
(b) L 8B, (c) L 10B, (d) L 12B

3.3. Influence of the initial prestress level on free frequencies

Next, the influence of initial prestress level S on the free fi(P ) frequencies of the domes is
calculated. The time-independent concentrated force applied vertically (gravity load) to one top
node is considered. Two variants of loads i.e., P = 1kN and P = 5kN are taken into account.
To compare the response to external disturbance, the load is applied in three different positions.
The first position is a node of the upper section of the dome, the second position corresponds
with a node on the hoop of the second section, and the third one – is with the third section,
respectively. It means, according to Fig. 1, that the load is applied to the 1st, 3rd, and 5th node.
It should be noted that taking into account the external load, the initial conditions change, and
the influence of initial prestress decreases. The load causes additional stress in the system and it
is necessary to determine the minimum prestress level Smin. Smin must ensure the appropriate
identification of the element type and provide the positive definite matrix. This is calculated
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Fig. 8. Influence of the initial prestress S on the natural frequency for Geiger domes type A: (a) G 6A,
(b) G 8A, (c) G 10A, (d) G 12A

individually for each dome for each variant of the load. As an example, the results of the analysis
of domes with 6 load-bearing girders are shown (Tables 5-8).
In the case of Levy domes type A, the first natural f1(0) and free f1(P ) frequencies are shown

in Table 5. Due to the lack of mechanisms, the free frequencies, like natural ones, are practically
not affected by the initial prestress, and are independent of the number of load-bearing girders.
The natural frequencies are the same as natural ones. The only thing that changes is the lowest
level of initial prestress. It depends not only value of the load but also on the number of loaded
nodes. The second position (3rd node) corresponding with a node on the hoop of the second
section is the worst, and Smin level is only 42 kN. The first position (1st node) corresponds with
a node of the upper section of the dome, and Smin is equal to 18 kN. The third position (5th
node) corresponds with a node of third section, and Smin is equal to 5 kN.
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Fig. 9. Influence of the initial prestress S on the natural frequency for Levy domes type A: (a) L 6A,
(b) L 8A, (c) L 10A, (d) L 12A

In the case of Levy domes type B, the first natural f1(0) and free f1(P ) frequencies corre-
sponding to the one identified mechanism are shown in Table 6. The external force placed in the
first position (1st node) corresponds with a node of the upper section of the dome causing too
much disturbance of the equilibrium state, and it is impossible to obtain the minimal prestress.
The second position (3rd node) corresponds with a node on the hoop of the second section,
and Smin is equal to 50 kN. The third position (5th node) corresponds with a node of the third
section, and Smin is equal to 12 kN. The free frequencies are changing almost linearly.

In turn, in the case of Geiger domes, the first and last natural fi(0) and free fi(P ) frequencies
corresponding to the mechanisms are presented in Table 7 (for domes type A) and in Table 8 (for
domes type B). For the Geiger domes type A, the third position (5th node) corresponding with
a node of the third section is the worst, and Smin is equal to 36 kN, for both free and natural
frequencies. The second position (3rd node) corresponds with a node on the hoop of the second
section, and Smin is equal to 34 kN. The first position (1st node) corresponds with a node of the
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Table 5. First natural f1(0) and free f1(P ) frequency [Hz] for dome L 6A

S

[kN]

f1(P )
f1(0) 1st node 3rd node 5th node

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN

0 12.84
1 12.86 12.86
4 12.91 12.91 12.91
5 12.92 12.92 12.92 12.92
9 12.99 12.99 12.99 12.99 12.99
10 13.01 13.01 13.00 13.01 13.00
18 13.14 13.14 13.14 13.14 13.14 13.13
20 13.17 13.18 13.18 13.17 13.18 13.17
30 13.34 13.34 13.34 13.34 13.34 13.33
40 13.50 13.50 13.51 13.50 13.50 13.50
42 13.53 13.54 13.53 13.54 13.52 13.53 13.53
50 13.66 13.67 13.67 13.66 13.65 13.66 13.66

Table 6. First natural f1(0) and free f1(P ) frequency [Hz] for dome L 6B

S

[kN]

f1(P )
f1(0) 1st node 3rd node 5th node

1 kN 5 kN 1kN 5kN 1kN 5kN

0 0.00
1 2.49
3 4.32 4.23
5 5.57 5.49
10 7.88 7.51 7.84
12 8.63 8.29 8.56 8.26
20 11.15 10.88 11.11 10.84
22 11.69 11.54 11.38 11.64 11.35
30 13.65 13.53 13.42 13.62 13.38
40 15.76 15.65 18.04 15.74 15.49
50 17.62 17.53 19.12 15.53 17.59 17.34

upper section of the dome, and Smin is equal to 11 kN. However, for the Geiger dome type B,
the first position (1st node) corresponding with a node of the upper section is the worst, and
Smin is equal to 41 kN. The second position (3rd node) corresponds with a node on the hoop of
the second section, and Smin is equal to 26 kN. The third position (5th node) corresponds with
a node of the third section, and Smin is equal to 2 kN.

4. Conclusions

In this paper, the dynamic behaviour of tensegrity domes is explored. It is well known that the
number of prestress-dependent frequencies is equal to the number of infinitesimal mechanisms.
In the absence of prestress, these frequencies are zero, and the corresponding forms of vibrations
implement the mechanisms. After introducing the initial prestress, the frequencies increase. If
several mechanisms are identified, the higher frequencies are more sensitive to the initial prestress
changes. The sensitivity of these natural frequencies to the initial prestress is so great that the



Parametric dynamic analysis of tensegrity cable-strut domes 265

Table 7. Natural fi(0) and free fi(P ) frequency [Hz] for dome G 6A

f1(P ) f8(P )
S [kN] f1(0) 1st node 3rd node 5th node f8(0) 1st node 3rd node 5th node

1 kN 5 kN 1 kN 5kN 1 kN 5kN 1 kN 5 kN 1 kN 5 kN 1 kN 5kN

0 0.00 0.00
1 0.73 1.75
3 1.26 1.19 3.03 3.02
5 1.62 1.56 3.91 3.90
8 2.05 1.99 2.08 4.95 4.94 5.27
10 2.30 2.26 2.31 5.52 5.52 5.73
11 2.41 2.35 2.22 2.39 5.79 5.79 5.79 5.95
12 2.51 2.46 2.34 2.49 2.51 6.05 6.05 6.05 6.17 6.06
20 3.25 3.22 3.12 3.23 3.23 7.81 7.81 7.80 7.85 7.80
30 3.98 3.96 3.88 3.96 3.96 9.57 9.56 9.55 9.58 9.56
34 4.23 4.22 4.19 4.20 4.20 4.23 10.19 10.18 10.17 10.22 10.44 10.25
36 4.36 4.35 4.33 4.32 4.32 4.36 4.31 10.48 10.48 10.45 10.52 10.71 10.56 10.47
40 4.59 4.58 4.51 4.58 4.55 4.58 4.54 11.05 11.05 11.04 11.05 11.22 11.04 11.03
50 5.13 5.12 5.06 5.12 5.08 5.12 5.09 12.35 12.35 12.34 12.35 12.45 12.34 12.32

Table 8. Natural fi(0) and free fi(P ) frequency [Hz] for dome G 6B

f1(P ) f8(P )
S [kN] f1(0) 1st node 3rd node 5th node f8(0) 1st node 3rd node 5th node

1 kN 5 kN 1 kN 5kN 1 kN 5kN 1 kN 5 kN 1 kN 5 kN 1 kN 5kN

0 0.00 0.00
1 0.72 4.21
2 1.02 1.41 2.16 5.96 8.64 13.21
5 1.61 1.76 2.33 9.42 10.56 14.20
10 2.28 2.32 2.29 2.61 13.32 13.56 13.52 15.87
14 2.70 2.69 2.72 2.66 2.92 15.77 18.91 15.71 15.66 17.45
20 3.23 3.22 3.22 3.13 3.28 18.84 20.72 18.77 18.85 19.61
26 3.68 3.67 3.55 3.72 3.69 3.68 21.48 22.67 21.33 21.65 21.47 21.65
30 3.96 3.94 3.94 3.97 3.94 3.94 23.08 23.92 22.97 23.08 23.06 23.33
40 4.57 4.55 4.55 4.54 4.56 4.53 26.65 27.06 26.54 26.42 26.63 26.72
41 4.62 4.61 4.57 4.61 4.58 4.69 4.59 26.98 27.31 32.27 26.97 26.79 27.16 26.91
50 5.11 5.09 5.06 5.09 5.07 5.10 5.06 29.79 30.01 33.81 29.69 29.47 29.77 29.79

change in the level of prestress can be successfully used to control the dynamic properties of the
structure. Theoretically, other frequencies should be practically insensitive to self-stress changes.
However, in the case of some analyzed domes, i.e., Levy domes type B and Geiger domes type A,
it is different. There are additional frequencies that depend on the initial prestress. In the absence
of prestress, the additional frequencies, unlike to frequency corresponding to the mechanism, are
not zero. The number of them, and the sensitivity to initial prestress changes, depends on the
kind of dome and number of girders.
Comparing all the results, we can say that due to the lack of the mechanisms, i.e., Levy

dome type A, the natural and free frequencies are practically not affected by the initial prestress,
independent of the number of load-bearing girders.
The considerations contained in this paper indicate the unusual behaviour of tensegrity

domes. The obtained results are important for dynamic stability analysis of behaviour of tenseg-
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rity structures under periodic loads, which will be the subject of feature investigation. The
dynamic stability analysis cannot be carried out without the analysis presented in this paper.
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